Jun Tang | Computer Science | Best Researcher Award

Mr. Jun Tang | Computer Science | Best Researcher Award

AI Algorithm Researcher | Chengdu Zhihui Heneng City Technology | China

Mr. Jun Tang is a researcher specializing in intelligent transportation and autonomous driving, with a strong focus on the integration of computer vision and artificial intelligence to enhance vehicular perception and decision making systems. His research primarily explores large vision foundation models and their applications in object detection, scene understanding, and adaptive driving environments. He has contributed to developing advanced detection frameworks that leverage reinforcement learning to improve recognition accuracy, robustness, and real time responsiveness in dynamic traffic conditions. Mr. Tang’s recent interests include prompt-guided object detection methods that utilize natural language and contextual cues to refine visual understanding within autonomous systems. Through his work at Chengdu Zhihui Heneng City Technology, he plays a key role in bridging the gap between theoretical AI models and practical intelligent mobility applications, fostering innovations that advance the safety, efficiency, and scalability of next generation transportation systems. His interdisciplinary approach combines deep learning, machine perception, and cognitive automation, contributing to the development of more adaptive and human like decision making in autonomous vehicles.

Profile: Orcid

Featured Publications

Tang, J., Li, D., Yang, J., Chen, J., & Yuan, R. (2025). Leveraging large visual models for enhanced object detection: An improved SAM-YOLOv5 model. Knowledge-Based Systems, 114757.

Tang, J. (2025, August 29). RT-DETR-based intelligent transportation object detection optimization method and system with prompt mechanism fusion.

Tang, J. (2025, May 27). Object detection method and system based on prompt engineering and regional text description.

Tang, J. (2025, April 11). Quantitative evaluation method and system for multimodal large models.

Tang, J. (2025, January 17). Evaluation method and system for urban governance multimodal large models based on text labeling.

Jinglin Li | Computer Science | Best Researcher Award

Mr. Jinglin Li | Computer Science | Best Researcher Award

Engineer | China National Nuclear Corporation | China

Li Jinglin is a researcher specializing in intelligent systems, reinforcement learning, and energy-efficient technologies for industrial and service applications. He holds advanced degrees in Instrument Science and Technology, Electrical Engineering, and Vehicle Engineering with a focus on new energy systems. His research encompasses the development of intelligent interactive service technologies for elderly care, optimization of energy-harvesting wireless sensor networks, and multi-task scheduling for energy-secured unmanned vehicles. He has led projects on digital twin platform technologies and vertical displacement control of nuclear fusion plasma, applying deep reinforcement learning to enhance system performance and replace traditional control methods. Li has extensive experience in algorithm design, including MATLAB-based reinforcement learning, adaptive dynamic programming, and multi-level exploration deep Q-network scheduling, with applications in optimal microgrid transmission, mobile charging sequence scheduling, and network monitoring. His work has resulted in multiple first-author publications in high-impact journals covering reinforcement learning, wireless sensor networks, and energy management, as well as conference contributions in control and automation. Beyond his technical expertise, he demonstrates strong analytical, problem-solving, and team collaboration skills, with experience in summarizing complex research findings and implementing practical solutions. Li actively engages in academic presentations and has earned recognition for his research achievements. In addition to his research, he maintains leadership roles in university sports teams, reflecting his commitment to teamwork, discipline, and resilience. His professional approach combines a proactive mindset, logical thinking, and a dedication to advancing intelligent and sustainable technological solutions across both industrial and service domains.

Profile: Scopus

Featured Publications

Li, J. (2024). A deep reinforcement learning approach for online mobile charging scheduling with optimal quality of sensing coverage in wireless rechargeable sensor networks. Ad Hoc Networks, 156, 103431.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal sensing coverage in wireless rechargeable sensor networks. Journal of Ambient Intelligence and Humanized Computing, 15(6), 2869–2881.

Li, J. (2023). Mobile charging sequence scheduling for optimal sensing coverage in wireless rechargeable sensor networks. Applied Sciences, 13(5), 2840.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. IEEE Transactions on Network and Service Management.

Li, J. (2024). A swarm deep reinforcement learning based on-demand mobile charging-scheduling and charging-time control joint algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. Expert Systems with Applications.