Jinglin Li | Computer Science | Best Researcher Award

Mr. Jinglin Li | Computer Science | Best Researcher Award

Engineer | China National Nuclear Corporation | China

Li Jinglin is a researcher specializing in intelligent systems, reinforcement learning, and energy-efficient technologies for industrial and service applications. He holds advanced degrees in Instrument Science and Technology, Electrical Engineering, and Vehicle Engineering with a focus on new energy systems. His research encompasses the development of intelligent interactive service technologies for elderly care, optimization of energy-harvesting wireless sensor networks, and multi-task scheduling for energy-secured unmanned vehicles. He has led projects on digital twin platform technologies and vertical displacement control of nuclear fusion plasma, applying deep reinforcement learning to enhance system performance and replace traditional control methods. Li has extensive experience in algorithm design, including MATLAB-based reinforcement learning, adaptive dynamic programming, and multi-level exploration deep Q-network scheduling, with applications in optimal microgrid transmission, mobile charging sequence scheduling, and network monitoring. His work has resulted in multiple first-author publications in high-impact journals covering reinforcement learning, wireless sensor networks, and energy management, as well as conference contributions in control and automation. Beyond his technical expertise, he demonstrates strong analytical, problem-solving, and team collaboration skills, with experience in summarizing complex research findings and implementing practical solutions. Li actively engages in academic presentations and has earned recognition for his research achievements. In addition to his research, he maintains leadership roles in university sports teams, reflecting his commitment to teamwork, discipline, and resilience. His professional approach combines a proactive mindset, logical thinking, and a dedication to advancing intelligent and sustainable technological solutions across both industrial and service domains.

Profile: Scopus

Featured Publications

Li, J. (2024). A deep reinforcement learning approach for online mobile charging scheduling with optimal quality of sensing coverage in wireless rechargeable sensor networks. Ad Hoc Networks, 156, 103431.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal sensing coverage in wireless rechargeable sensor networks. Journal of Ambient Intelligence and Humanized Computing, 15(6), 2869–2881.

Li, J. (2023). Mobile charging sequence scheduling for optimal sensing coverage in wireless rechargeable sensor networks. Applied Sciences, 13(5), 2840.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. IEEE Transactions on Network and Service Management.

Li, J. (2024). A swarm deep reinforcement learning based on-demand mobile charging-scheduling and charging-time control joint algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. Expert Systems with Applications.