Borealis Polymer Oy | Finland
Professional Profile
Early Academic Pursuits
Niyi Babatunde Ishola commenced his academic journey with a Bachelor of Technology in Chemical Engineering from Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Nigeria, in 2011. Building upon this foundation, he pursued a Master of Science in Chemical Engineering at Obafemi Awolowo University (OAU), Ife, Nigeria, completing it in 2016. Subsequently, he ventured into doctoral studies at Universite de Lyon1, Lyon, France, achieving a Ph.D. in Process Engineering in 2022.
Professional Endeavors
His professional trajectory encompasses diverse roles across international borders. Notably, at Borealis Polymers Oy, Finland, he contributed significantly to research and development, focusing on olefin polymerization catalysts, bench-scale polymerization behavior, and catalyst performance evaluation. Concurrently, as a Doctoral Researcher at CP2M Laboratory, CPE, Lyon, France, he delved into extensive research involving gas phase ethylene polymerization, catalyst synthesis, sorption experiments, and high-throughput reactor studies. Furthermore, Ishola has served as a Graduate Teaching Assistant at the Chemical Engineering Department of OAU, Nigeria. In this capacity, he mentored students, assisted in tutorials, and explored biodiesel synthesis and catalyst production methodologies.
Contributions and Research Focus
Hisresearch contributions are prolific and multidimensional, spanning numerous publications across esteemed journals. His research primarily revolves around process engineering, polymerization kinetics, catalyst development, biodiesel synthesis, sorption experiments, and modeling techniques. Notably, he has investigated the application of machine learning, genetic neuro-computing models, and artificial intelligence for insights into various industrial processes such as membrane performance, biodiesel production, and pollutant degradation. His expertise encompasses diverse methodologies, including Design of Experiment, Response Surface Methodology, Neural Networks, and Adaptive Neuro-Fuzzy Inference Systems, applied in optimizing and modeling chemical processes.
Accolades and Recognition
Ishola's dedication and scholarly prowess have earned him prestigious scholarships, including the Petroleum Technology Development Fund (Nigeria) scholarship in collaboration with Ministere Affaires Estrangeres (France), along with the NRF-TWAS African Renaissance Doctoral Scholarship at the University of Pretoria, South Africa.
Impact and Influence
Through his extensive research and scholarly publications, Niyi Babatunde Ishola has significantly contributed to the field of chemical engineering, particularly in polymerization kinetics, catalyst development, and alternative energy sources such as biodiesel production. His utilization of advanced modeling techniques and innovative methodologies has widened the horizons of process engineering and sustainability studies.
Legacy and Future Contributions
As a researcher and educator, Ishola leaves a legacy of rigorous scientific inquiry, innovative problem-solving, and multidisciplinary exploration. His commitment to advancing the frontiers of chemical engineering and sustainability science is evident through his prolific publications and ongoing contributions to academia. His future endeavors are anticipated to continue shaping the field through cutting-edge research, mentorship, and scholarly contributions.
Citations
A total of 103 citations for his publications, demonstrating the impact and recognition of his research within the academic community.
- Citations 516
- h-index 8
- i10-index 8
Notable Publications
E Betiku, VO Odude, NB Ishola, A Bamimore, AS Osunleke, AA Okeleye
(135 ) 2016
Development of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion of Kariya Seed Oil to Methyl Esters: A Case of Synthesis …
E Betiku, AA Okeleye, NB Ishola, AS Osunleke, TV Ojumu
( 81) 2019
Application of agricultural waste-based catalysts to transesterification of esterified palm kernel oil into biodiesel: A case of banana fruit peel versus cocoa pod husk
VO Odude, AJ Adesina, OO Oyetunde, OO Adeyemi, NB Ishola, AO Etim, ...
( 75) 2019
Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil …
E Betiku, AS Osunleke, VO Odude, A Bamimore, B Oladipo, AA Okeleye, ...
( 56 ) 2021
Process modeling and optimization of sorrel biodiesel synthesis using barium hydroxide as a base heterogeneous catalyst: appraisal of response surface methodology, neural …
NB Ishola, AA Okeleye, AS Osunleke, E Betiku
( 43 ) 2019
Optimization of sorrel oil biodiesel production by base heterogeneous catalyst from kola nut pod husk: Neural intelligence‐genetic algorithm versus neuro‐fuzzy‐genetic algorithm
E Betiku, NB Ishola
( 32 ) 2020
Modelling of synthesis of waste cooking oil methyl esters by artificial neural network and response surface methodology
AR Soji-Adekunle, AA Asere, NB Ishola, IM Oloko-Oba, E Betiku
( 30 ) 2019
Adaptive neuro-fuzzy inference system-genetic algorithm vs. response surface methodology: A case of optimization of ferric sulfate-catalyzed esterification of palm kernel oil
NB Ishola, OO Adeyemi, AJ Adesina, VO Odude, OO Oyetunde, ...
( 29 ) 2017
Crude rubber seed oil esterification using a solid catalyst: Optimization by hybrid adaptive neuro-fuzzy inference system and response surface methodology
CF Jisieike, NB Ishola, LM Latinwo, E Betiku
( 7 ) 2023
AS Yusuff, NB Ishola, AO Gbadamosi, KA Thompson-Yusuff
( 7 ) 2022