Jamal Alotaibi | Engineering | Best Researcher Award

Assist. Prof. Dr. Jamal Alotaibi | Engineering | Best Researcher Award

Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia.

Dr. Jamal Alotaibi is an accomplished researcher and educator in the field of Computer Engineering. With expertise in IoT, AI, and security, he has contributed significantly to the advancement of Smart Transportation and Vehicle-to-Vehicle (V2V) communication. Currently serving as the Head of the Computer Engineering Department at Qassim University, his work focuses on secure and efficient computing frameworks for the Internet of Vehicles (IoV).

Profile

Google Scholar

Education πŸŽ“

  • Ph.D. in Computer Engineering (2018 – 2022) – Wayne State University, USA

  • M.Sc. in Electrical and Computer Engineering (2016 – 2017) – Wayne State University, USA

  • B.Sc. in Computer Engineering (2008 – 2013) – Qassim University, KSA

Experience πŸ‘¨β€πŸ«

  • Qassim University (2022 – Present) – Assistant Professor, now Head of the Computer Engineering Department (2024–Present)

  • Wayne State University (2016 – 2022) – Research Assistant in IoT and Security Labs

  • STC Company (2013) – Network Engineer

  • Consultations:

    • Ford Motor Company (2020 – 2022) – Embedded Systems Consultant for Electric Vehicles

    • Verizon Company (2021–2022) – V2V Infrastructure Consultant

    • City of Detroit (2021–2023) – IoV Consultant

Research Interests πŸ”¬

  • Internet of Vehicles (IoV) and Fog Computing

  • Software-Defined Networking (SDN) for Smart Transportation

  • Blockchain-based Security Solutions

  • Machine Learning for Secure Communication Systems

Awards πŸ†

  • Head of IoT Research Lab – Wayne State University

  • Head of Research Committee – Qassim University (2023 – Present)

Publications Top Notes: πŸ“š

SAFIoV: A Secure and Fast Communication in Fog-Based IoV Using SDN and Blockchain

IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021

Read Here

A Lightweight and Fog-Based Authentication Scheme for Internet-of-Vehicles

IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEM-CON), 2021

Read Here

PPIoV: A Privacy-Preserving Framework for IoV-Fog Using Federated Learning and Blockchain

IEEE World AI IoT Congress, 2022

Read Here

Insight into IoT Applications and Common Practice Challenges

Insight Journal, 2022

Read Here

A hybrid software-defined networking approach for enhancing IoT cybersecurity with deep learning and blockchain in smart cities

SDN-Enabled Efficient Resource Utilization in a Secure, Trustworthy and Privacy Preserving IOV-Fog Environment