Jinglin Li | Computer Science | Best Researcher Award

Mr. Jinglin Li | Computer Science | Best Researcher Award

Engineer | China National Nuclear Corporation | China

Li Jinglin is a researcher specializing in intelligent systems, reinforcement learning, and energy-efficient technologies for industrial and service applications. He holds advanced degrees in Instrument Science and Technology, Electrical Engineering, and Vehicle Engineering with a focus on new energy systems. His research encompasses the development of intelligent interactive service technologies for elderly care, optimization of energy-harvesting wireless sensor networks, and multi-task scheduling for energy-secured unmanned vehicles. He has led projects on digital twin platform technologies and vertical displacement control of nuclear fusion plasma, applying deep reinforcement learning to enhance system performance and replace traditional control methods. Li has extensive experience in algorithm design, including MATLAB-based reinforcement learning, adaptive dynamic programming, and multi-level exploration deep Q-network scheduling, with applications in optimal microgrid transmission, mobile charging sequence scheduling, and network monitoring. His work has resulted in multiple first-author publications in high-impact journals covering reinforcement learning, wireless sensor networks, and energy management, as well as conference contributions in control and automation. Beyond his technical expertise, he demonstrates strong analytical, problem-solving, and team collaboration skills, with experience in summarizing complex research findings and implementing practical solutions. Li actively engages in academic presentations and has earned recognition for his research achievements. In addition to his research, he maintains leadership roles in university sports teams, reflecting his commitment to teamwork, discipline, and resilience. His professional approach combines a proactive mindset, logical thinking, and a dedication to advancing intelligent and sustainable technological solutions across both industrial and service domains.

Profile: Scopus

Featured Publications

Li, J. (2024). A deep reinforcement learning approach for online mobile charging scheduling with optimal quality of sensing coverage in wireless rechargeable sensor networks. Ad Hoc Networks, 156, 103431.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal sensing coverage in wireless rechargeable sensor networks. Journal of Ambient Intelligence and Humanized Computing, 15(6), 2869–2881.

Li, J. (2023). Mobile charging sequence scheduling for optimal sensing coverage in wireless rechargeable sensor networks. Applied Sciences, 13(5), 2840.

Li, J. (2024). A reinforcement learning based mobile charging sequence scheduling algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. IEEE Transactions on Network and Service Management.

Li, J. (2024). A swarm deep reinforcement learning based on-demand mobile charging-scheduling and charging-time control joint algorithm for optimal stochastic event detection in wireless rechargeable sensor networks. Expert Systems with Applications.

Nooshin Nemati | Computer Science | Best Researcher Award

Ms. Nooshin Nemati | Computer Science | Best Researcher Award

Ankara University, Turkey

Dr. Nooshin Nemati is a dedicated researcher in the fields of Artificial Intelligence, Deep Learning, and Medical Image Processing, currently pursuing her PhD in Computer Engineering at Ankara University, where she also contributes to multiple AI-based cancer detection projects. She holds a Master’s degree in Electrical and Electronics Engineering from Yuzuncu Yıl University and a Bachelor’s from Qazvin Azad University.

Profile:

Educational Background:

Nooshin Nemati is currently a PhD candidate in Computer Engineering at Ankara University. She earned her Master’s degree in Electrical and Electronics Engineering from Yuzuncu Yıl University with a completed her undergraduate studies at Qazvin Azad University in Iran.

Research Areas:

Her main research interests lie in Artificial Intelligence, Deep Learning, Medical Image Processing, and Computer Vision, particularly applied to cancer detection in histopathology images. She focuses on segmentation, classification, and detection tasks using advanced deep learning frameworks.

Projects and Contributions:

She has actively contributed to significant research initiatives such as the TUBITAK 1001 Project, focused on deep learning methodologies for breast cancer detection, and the BAP Project, which deals with cancer region detection in histopathology images. She has also been involved in the development of important datasets such as NuSeC and MiDeSeC, aimed at supporting machine learning in medical imaging. In addition, she has applied her technical skills in software development projects including system analysis and automation tools for banks.

Technical Skills:

Nooshin is proficient in AI, Machine Learning, Deep Learning, and programming frameworks such as ASP.NET and WordPress. She also holds certifications like Network+ and CCNA, showcasing her broad technical competence.

Citation Metrics:

  • Total Citations: 75

  • Citations Since 2020: 71

  • h-index: 6

  • h-index Since 2020: 5

  • i10-index: 3

  • i10-index Since 2020: 3

Publication Top Notes:

  • An imbalance-aware nuclei segmentation methodology for H&E stained histopathology images
    2023
    Citations: 22

  • Detection of colorectal cancer with vision transformers
    2022
    Citations: 11

  • Effect of color normalization on nuclei segmentation problem in H&E stained histopathology images
    2022
    Citations: 10

  • A hybridized deep learning methodology for mitosis detection and classification from histopathology images
    2023
    Citations: 8

  • CompSegNet: An enhanced U-shaped architecture for nuclei segmentation in H&E histopathology images
    2024
    Citations: 7